Shape-memory NiTi foams produced by replication of NaCl space-holders.
نویسندگان
چکیده
NiTi foams were created with a structure (32-36% open pores 70-400 microm in size) and mechanical properties (4-25 GPa stiffness, >1000 MPa compressive strength, >42% compressive ductility, and shape-memory strains up to 4%) useful for bone implant applications. A mixture of NiTi and NaCl powders was hot-isostatically pressed at 950 and 1065 degrees C and the NaCl phase was then dissolved in water. The resulting NiTi foams show interconnected pores that replicate the shape and size of the NaCl powders, indicating that NiTi powders densified significantly before NaCl melted at 801 degrees C. Densifying NiTi or other metal powders above the melting point of the space-holder permits the use of NaCl, with the following advantages compared with higher-melting, solid space-holders such as oxides and fluorides used to date: (i) no temperature limit for densification; (ii) lower cost; (iii) greater flexibility in powder (and thus pore) shape; (iv) faster dissolution; (v) reduced metal corrosion during dissolution; (vi) lower toxicity if space-holder residues remain in the foam.
منابع مشابه
Shape-memory NiTi–Nb foams
A new powder metallurgy technique for creating porous NiTi is demonstrated, combining liquid phase sintering of prealloyed NiTi powders by Nb additions and pore creation by NaCl space-holders. The resulting foams exhibit well-densified NiTi–Nb walls surrounding interconnected pores created by the space-holder, with controlled fraction, size, and shape. Only small amounts of Nb (3 at.%) are need...
متن کاملProcessing of NiTi Foams by Transient Liquid Phase Sintering
Porous NiTi was produced by sintering pre-alloyed NiTi powders (with small Ni addition to form Ni-rich composition) with NaCl powders which are removed to create 40-60 vol.% macropores which are open to the surface, blocky in shape, and 100-400 lm in size. The microporosity present between the NiTi powders is infiltrated by an in situ created NiTi-Nb eutectic liquid which, after solidification,...
متن کاملTitanium foams produced by solid-state replication of NaCl powders
Open-celled titanium foams were fabricated by vacuum hot pressing of a blend of Ti and NaCl powders followed by NaCl removal in water. Densification kinetics of the Ti/NaCl blends are measured at 780 ◦C at various pressures (30–50MPa), NaCl volume fractions (30–70%) and NaCl powder sizes (50–500 m). As compared to pure Ti powders, densification kinetics of the blends is faster for relative dens...
متن کاملPorous NiTi for bone implants: a review.
NiTi foams are unique among biocompatible porous metals because of their high recovery strain (due to the shape-memory or superelastic effects) and their low stiffness facilitating integration with bone structures. To optimize NiTi foams for bone implant applications, two key areas are under active study: synthesis of foams with optimal architectures, microstructure and mechanical properties; a...
متن کاملTRANSFORMATION BEHAVIOR OF NiTi SHAPE MEMORY ALLOYS TREATED BY THERMOMECHANICAL PROCESSING USING DSC
Abstract: In the present study the effect of thermomechanical treatment (cold work and annealing) on the transformation behavior of NiTi shape memory alloys was studied. Differential scanning calorimetry was used to determine transformation temperature and its relation to precipitates and defects. Three alloys including Ti-50.3at.% Ni, Ti-50.5at.% Ni (reclamated orthodontic wires) and 50.6at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biomaterialia
دوره 4 6 شماره
صفحات -
تاریخ انتشار 2008